DEMOCRATIC PEOPLE'S REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

Training offer BACHELOR: Academic

Etablissement	Faculty / Institute	Departement
Hassiba Benbouali of	Nature and Life	Nutrition and food
CHLEF University	sciences faculty	sciences

field	sactor	Speciality
Nature and Life sciences faculty	Food sciences	Food, Nutrition and Pathology

Bachelor's Degree Identity Card

Title: Food, Nutrition and Pathology

Page Type : training. **Language** ; French / English **Translation** : الغذاء و التغذية و علم الأمراض **Status** Published.

Program Overview

The objective of this specialty is to train students with solid scientific and technical skills in the field of Nutrition, Food and Health Sciences, able to master concepts and methods, develop experimental schemes, to develop a critical analysis of experimental situations. It also aims to train future quality control and assurance managers in the fields of environment, agri-food, medicine and cosmetics to meet requirements for continuous quality improvement.

The Food, Nutrition and Pathology degree is developed to allow the acquisition of fundamental and technical bases, through in-depth teaching of Physiology of Integrated Systems, Food Biochemistry, Food Safety, Food Microbiology, food toxicology, analytical technique and the physico-chemical properties of foods.

The candidate should be able at the end of his training to meet the requirements that the world imposes on its future executives both in the field of work in companies or laboratories (professional integration) and in research and higher education (PG./Doctorate and teaching). **Curriculum Highlights**

The program integrates knowledge in biology, biochemistry, physiology, nutrition and pathology, providing an overview of the relationship between food and health. This approach enables students to understand the mechanisms by which diet influences disease development, and to develop skills to intervene in the prevention and management of these diseases.

This training really meets many needs both at the level of local public authorities (A.P.C., Daira or Wilaya) or private: quality control or medical analysis laboratories, hospital or private, where it will be able to participate effectively in the various activities of monitoring, diagnosingand decaracterisation of pathogenic germs and their anti-bioresistance. It will also be very useful in the pharmaceutical field to control locally produced or imported drugs (SAIDAL,...), with EPEAL for water analysis, supervision in local communities at the level of services of health and safety, at the level of fraud departments, in the food industry sector (milking, canning, beverages, ERIAD, milk and derivatives, confectionery, ice cream,...)

Admissions Information

Offers: Bachelor Degree in Experimental Sciences **Core Courses**

Core courses are designed to provide students with the fundamentals. They generally cover the essential concepts needed to understand the basic principles of the discipline. Here are some examples of topics covered in core courses:

1. Biochemistry: Study of the chemical processes that take place in living organisms, with a particular focus on nutrient metabolism.

2. Physiology: Study of the functioning of organs and systems in the human body, including the digestive system, endocrine system and cardiovascular system.

3. Food Microbiology: Study of micro-organisms, including bacteria, viruses and fungi, and their role in food and health. Understanding of the microbiological risks associated with food and measures to prevent food-borne infections.

4. Dietetics: Study of the principles of balanced eating and the development of food plans adapted to individual and collective needs. Development of skills in nutrition counselling and therapeutic education.

5. Nutrition and pathologies: Study of the links between diet and chronic diseases, such as cardiovascular disease, diabetes, obesity and cancer.

6. Food safety: -Food quality management.

-Toxicology and microbiological safety of food.

Advanced Topics

Advanced topics delve deeper into the concepts and techniques presented in core courses and introduce more specialized areas. Here are some examples of advanced topics:

• Nutrition and Metabolic Diseases:

- Advanced nutritional strategies for the prevention and management of pathologies.
- Nutrition and Cardiovascular Diseases:
 - Study of the pathophysiological mechanisms involved in cardiovascular diseases and the role of diet in their prevention and treatment.

• Nutrition and Cancer:

- Nutritional interventions to improve the quality of life of cancer patients and reduce the side effects of treatments.
- Nutrition and Digestive Diseases:
 - In-depth knowledge of chronic inflammatory bowel diseases, functional intestinal disorders, and liver diseases.
- Nutrition and Neurodegenerative Diseases:
 - Study of the links between diet and Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Exploration of nutritional strategies to prevent or slow the progression of these diseases.

• Nutrition for High-Level Athletes:

• Optimization of diet to improve athletic performance and promote recovery. Design of personalized dietary plans for athletes in different disciplines.

• Nutritional Epidemiology:

• Mastery of methods for studying the links between diet and health at the population level.

Tuition Fees Free of charge. Teaching Language French/English. Full Curriculum

II – Semi-annual Learning Organization Sheet

Common Base «Natural and Life Sciences»

Semester 1													
Teaching units		Subject matter	Credits	Coefficients	Н	ours weekl	У	SSH		Ν	/lode of e	evaluati	ion
	Code	Title	Cre	Coeff	Course	Tutorials	Practical Work	(15 semaines)	Other *	CI	N*	E	xam
Fundamental TU	F 1.1.1	General and organic chemistry	6	3	1h30	1h30	1h30	67h30	82h30	x	40%	x	60%
Code : FTU1.1 Credits : 18	F 1.1.2	Cell biology	8	4	1h30	1h30	3h00	90h00	110h00	x	40%	x	60%
Coefficients : 9	F 1.1.3	Mathematical Statistics	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
Methodology TU Code : MTU.1.1	M 1.1.1	Geology	5	3	1h30	1h30	1h00	60h00	65h00	x	40%	x	60%
Crédits : 9 Coefficients: 5	M 1.1.2	Communication and Expression Techniques I (in French)	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
Discovery Code : UED.1.1 Crédits : 2 Coefficients : 2	D 1.1.1	Working method and terminology	2	2	1h30	1h30	-	45h00	5h00	x	40%	x	60%
Transversal TU Code : UET 1.1 Crédits : 1 Coefficients : 1	T 1.1.1	Universal History of the Biological Sciences	1	1	1h30	-	-	22h30	2h30	-	-	x	100%
	Total Sen	nester 1	30	17	10h30	9h30	5h30	375h00	375h00			1	

SSH* = Semester scheduled hours Other*= Additional work in semi-annual consultation; CM*= Continuous monitoring.

Common Base «Natural and Life Sciences»

Semester 2								1					
Teaching units		Subject matter	Credits	Coefficients	Н	ours weekl	у	HW		Ν	/lode of e	evaluati	ion
	Code	Title	Cre	Coeffi	Course	Tutorials	Practical Work	(15 semaines)	Other *			xam	
Fundamental TU	F 1.1.1	Thermodynamics and chemistry of solutions	6	3	1h30	1h30	1h30	67h30	82h30	x	40%	x	60%
Code : FTU1.1 Credits : 18	F 1.1.2	Plant Biology	8	4	1h30	1h30	3h00	90h00	110h00	x	40%	x	60%
Coefficients : 9	F 1.1.3	Animal Biology	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
Methodology TU	M 1.1.1	Physical	5	3	1h30	1h30	1h00	60h00	65h00	x	40%	x	60%
Code : MTU.1.1 Crédits : 9 Coefficients: 5	Communication and Expression Techniques 2 (in English)	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%	
Discovery TU Code : UED.1.1 Crédits : 2 Coefficients : 2	D 1.1.1	Life sciences and socio- economic impacts	2	2	1h30	1h30	-	45h00	5h00	x	40%	x	60%
Transversal TU Code : UET 1.1 Crédits : 1 Coefficients : 1	T 1.1.1	Working method and terminology 2	1	1	1h30	-	-	22h30	2h30	-	-	x	100%
	Total Sen	nester 2	30	17	10h30	9h30	5h30	375h00	375h00				

SSH* = Semester scheduled hours Other*= Additional work in semi-annual consultation; CM*= Continuous monitoring.

Annex to the curriculum of the second year Field: Science of nature and life

Food Sciences

Semestre 3

	Subject matter	lits	ff	,	Weekly Hour	'S	SSH*		N	lode of	evaluati	on
Teaching Unite	Title	Credits	Coeff	Course	Tutorials	Practical Work	(15 semaines)	Other*	Cm	۱*	Exa	am
Fundamental TU Code : FTU 3.1	Plant physiology	4	2	1h30	-	1h30	45h00	55h00	x	40%	x	60%
Crédits : 6 Coefficients : 3	Food and food system	2	1	1h30	-	-	22h30	27h30	x	x	x	100%
Fundamental TU	Biochemistry	6	3	3h00	1h30	-	67h30	82h30	x	40%	х	60%
Code : FTU 3.2 Crédits : 12 Coefficients : 6	Genetic	6	3	3h00	1h30	-	67h30	82h30	x	40%	x	60%
Methodology TU Code : MTU 3.1 Crédits : 4 Coefficients: 2	Communication and Expression Techniques (in English)	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
Methodology TU Code : UEM 3.2 Crédits : 5 Coefficients: 3	Biophysics	5	3	1h30	1h30	1h00	60h00	65h00	x	40%	x	60%
Discovery TU	Environment and sustainable											
Code : UED 3.1 Crédits : 2 Coefficients : 2	development	2	2	1h30	1h30	-	45h00	5h00	x	40%	х	60%
Transversal TU	Ethics and University Ethics.											
Code : TTU 3.1 Crédits : 1 Coefficients : 1		1	1	1h30	-	-	22h30	2h30	-	-	х	100%
[]	Total Semester 3	30	17	15h00	7h30	2h30	375h00	375h00				

SSH* = Semester scheduled hours Other*= Additional work in semi-annual consultation; CM*= Continuous monitoring. Annex to the curriculum of the second year Field: Science of nature and life Food Sciences

Semestre 4

Unités	Subject matter	ts			Weekly Hou	irs	SSH*	Other*		Mode of	evalua	tion
d'enseignement	Title	Credits	Coeff	Course	Tutorials	Practical Work	(15 Weeks)		C	M*	E	xam
Fundamental TU	Animal physiology											
Code : FTU 3.1 Crédits : 6 Coefficients : 3		6	3	3h00	-	1h30	67h30	82h30	x	40%	x	60%
Fundamental TU Code : FTU 3.2	Microbiology	8	4	3h00	1h30	1h30	90h00	110h30	x	40%	x	60%
Crédits : 12 Coefficients : 6	Food and Basic Food Technology	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
U E Méthodologie Code : UEM 4.1 Crédits : 4 Coefficients: 2	Applied Immunology	4	2	1h30	1h30	-	45h00	55h00	x	40%	x	60%
Methodology TU Code : UEM 3.2 Crédits : 5 Coefficients: 3	Biostatistics	5	3	1h30	1h30	1h00	60h00	65h00	x	40%	x	60%
Discovery TU	Plants and Environment											
Code : UED 3.1 Crédits : 2 Coefficients : 2		2	2	1h30	1h30	-	45h00	5h00	х	40%	x	60%
Transversal TU	Computer Tools											
Code : TTU 3.1 Crédits : 1 Coefficients : 1		1	1	1h30	-	-	22h30	2h30	х	X	х	100%
Тс	otal Semester 4	30	17	13h30	7h30	4h00	375h00	375h00				

SSH* = Semester scheduled hours Other*= Additional work in semi-annual consultation; CM*= Continuous monitoring.

Third Year Program, Bachelor's Degree: Food, Nutrition and Pathology

Semester 5:

Teaching Units	SSH		Weel	dy Hours		Ŀ	ts	Educ	ation	Mode of e	valuation
	15Week	Course	Tutoria			Coeff	Credits		1	Continuous	Exam
	15 чеек			Wor	k Other	0	Cı	presently	Remotely	(40%)	(60%)
Fundamental Teaching Unit					-						
FTU 3.1.1(O/P) : Nutritional and food											
biochemistry											
Subject matter 1 : Food biochemistry and regulation	45h00	1h30	-	1h30	55h00	2	4			х	х
Subject matter 2 : Dietetics and food composition	45h00	1h30	-	1h30*	55h00	2	4			х	х
Subject matter 3 Nutrition and Pathologies	45h00	1h30	-	1h30*	55h00	2	4			Х	Х
FTU 3.1.2(O/P) :											
Physiology of integrated systems											
Subject matter 1 : Physiology of digestion	67h30	3 h	1h30		82h30	3	6			Х	Х
Methodology Teaching Unit											
MTU 1(O/P)											
Subject matter 1 : Applied statistics	45h00	1h30	1h30	1h00	55h00	2	4			Х	Х
Subject matter 2 : Traceability of food	60h00	1h30	1h30	1h00	65h00	3	5			Х	Х
Discovery Teaching Unit											
DTU 1(O/P) Subject matter 1 : General endocrinology	45h	1h30	1h30		5h	2	2	X	X	Х	Х
Transversal Teaching Unit											
UET1(O/P) Subject matter 1 : Food additives and contaminants	22h30	1h30			2h30	1	1	X	X	Х	100%
Total Semester 5	375h00	13h30	6h	6h30	375h00	17	30				

Third Year Program, Bachelor's Degree: Food, Nutrition and Pathology

Semester 6:

Teaching Units	SSH		Weekly	y Hours				Education	n 15Weeks	Mode of ev	valuation
	15 Weeks	Course	Tutorial		Other	Coeff	Credit			Continuous	Exam
	15 Weeks		S	Work	Other		S	presently	Remotely	(40%)	(60%)
Fundamental Teaching Unit											
FTU.1 (O/P) Food Security											
Subject matter 1 : Food quality management	45h	1h30	1h30	-	55h00	2	4			х	Х
Subject matter 2 : Toxicology and Microbiological food safet	45h	1h30	-	1h30*	55h00	2	4			х	Х
FTU.2(O/P) :											
Subject matter 1 : Food Microbiology	67h30	3h		1h30	82h30	3	6			х	Х
Subject matter 2 : Health and Nutritherapy	45h	1h30	1h30	-	55h00	2	4			х	Х
Methodology Teaching Unit											
MTU 1(O/P)											
Subject matter 1 : Physico- chemical properties of food	60h	1h30	1h	1h30	65h	3	5			Х	Х
Subject matter 2: Analytical techniques	45h	1h30		1h30	55h	2	4			Х	Х
Discovery Teaching Unit											
DTU 1(O/P)											
Subject matter 1 : physiology of major functions	45h	1h30	1h30		5h	2	2	X	Х	Х	Х
Transversal Teaching Unit				· · · · · · · · · · · · · · · · · · ·							
TTU 1(O/P)											
Subject matter 1 : Entrepreneurship	22h30				2h30	1	1	Х	Х	/	100%

Total Semester 6	375h00	12h.0	5h.	6h	375h	17	30				
------------------	--------	-------	-----	----	------	----	----	--	--	--	--

Overall training summary:

	Fundamental Teaching Units	Methodological Teaching Units	Discovery Teaching Units	Transversal Teaching Units	Total
Course	810	270	112.5	135	1327.5
Tutorials	180	22.5	0	0	202.5
Practical Work	225	337.5	112.5	0	675
Personal Work	1485	720	30	15	2250
Other					
Total	2700	1350	300	150	4500
Credits	108	54	12	6	180
Percentage of Credits per teaching unit	60	30	6.67	3.33	100.00

Detailed syllabus of the S5 and S6 subjects

Semester: 5 Fundamental Teaching Unit 1 (3.1.1): Nutritional and Food Biochemistry Course 1: Food Biochemistry and Regulation

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

- Acquire a thorough understanding of the biochemical processes involved in the digestion, absorption, and metabolism of macronutrients.
- Understand the molecular transformations of food and their impact on nutritional quality.
- Develop practical skills in the biochemical analysis of food.

Recommended Prior Knowledge:

• Food biochemistry and composition, as well as the physiology of digestion.

Course Content:

- I- Energy Requirements and Bioenergetics
- II- Proteins
 - \circ 1- Anabolism
 - 2- Catabolism
 - 3- Protein Content in the Body
 - 4- Nitrogen Balance

• III- Carbohydrates

- 1- Structure and Classification of Sugars (Glc, Fructose, Gal, Lactose, Sucrose...)
- 2- Catabolism (glycogenolysis, aerobic and anaerobic glycolysis)
- 3- Carbohydrate Content of Major Foods
- IV- Lipids
 - 1- Structure and Classification
 - \circ 2- Catabolism (lipase action, fatty acid activation, β oxidation)

• V- Molecular Transformations

• (oxidation, condensation, denaturation reactions...)

Practical Work:

- Studies of the physicochemical characteristics of orange juice
- Citric acid titration in lemon
- Thin layer chromatography
- Determination of Dornic acidity in milk and dairy products
- Protein titration in some food products
- Fat titration by Soxhlet

Assessment Method:

• Quizzes, reports, presentations.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

Bibliographic References:

1.Biochimie alimentaire.2008.Alaisetal.

2.Biochimie des aliments. 2002.Doins edition

Semester: 5 Fundamental Teaching Unit 1 (3.1.1): Nutritional and Food Biochemistry Course 2 : Dietetics and Food Composition Credits: 4 Coefficient:2

Teaching objectives (Describe what students were supposed to have learned from this topic -maximum 3 lines).

Recommended Prior Knowledge:

• Food biochemistry and composition, as well as the physiology of digestion.

Course contents :

I- Intake and Needs

- 1- Recommended intake of minerals and vitamins
- 2- Protein requirements
- 3- Carbohydrate requirements
- 4- Lipid and essential fatty acid requirements
- 5- Special needs (age, pregnancy, breastfeeding, sports...)

II- Dietetics as Supportive Therapy

- 1- Nutritional prescription
- 2- Application of dietetics in pathologies (CVD, nephropathy, gout, osteoporosis, digestive pathologies, deficiencies, eating disorders...)

III- Food Composition

- 1- Water and minerals
- 2- Beverages (coffee, tea, herbal teas, sodas, alcohol...)
- 3- Trace elements
- 4- Protein-rich foods
- 5- Lipid-rich foods
- 6- Carbohydrate-rich foods
- 7- Fruits and vegetables
- 8- Condiments

• 9- Vitamins

IV- Preventive Nutrition

Practical Work:

- 1- Food surveys and nutritional assessment (survey to be conducted in a retirement home for example)
- 2- Food glycemic index: practical protocol (video followed by discussion)
- 3- Dietary prescription: steps to follow (video followed by discussion)
- 4- Dietary management of the obese patient (video followed by discussion)
- 5- Dietary prescription in hypertension (survey of doctors in the public and private sectors)
- 6- Dietary prescription in type 2 diabetes (survey of practitioners in the public and private sectors)
- 7- Preventive nutrition: dietary prescription in pre-diabetic individuals (survey of practitioners in the public and private sectors)
- 8- Factors determining breastfeeding plans in working women (survey of midwives working in health centers and polyclinics)

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

- Dietetics and Nutrition. 2009. Apfelbaum et al. Practical Manual of Nutrition. 2009. Médart. ٠
- •

Semester: 5 Fundamental Teaching Unit 1 (3.1.1): Nutritional and Food Biochemistry Course 3: Nutrition and Pathologies

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

• Upon completion of this course, the student will be able to perform a systemic reasoning linking nutritional needs and deficiencies with physiological dysfunctions leading to major metabolic diseases.

Recommended Prior Knowledge:

• Physiology of major bodily functions.

Course Content:

• I- Metabolic Diseases

- o 1- Regulation of fasting and postprandial blood glucose
- 2- Pathophysiology of hyperglycemia
 - Type 1 diabetes
 - Type 2 diabetes
- 3- Molecular mechanisms of insulin resistance
- 4- Metabolic syndrome
- 5- Pathophysiology of hypoglycemia
- 6- Lipoprotein metabolism
- 7- Pathophysiology of dyslipoproteinemias
- 8- Pathophysiology of phenylketonuria

• II- Other Nutrition-Related Pathologies

- 1- Food allergies
- Cancers...

Practical Work:

- Diabetes,
- Hypertension,
- Obesity, osteoporosis,
- Anemia, celiac disease,
- Kwashiorkor, goiter, beriberi, rickets

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

- Maladies métaboliques de la nutrition.1977.Lubetzky
- Traité de diabétologie.2005.Grimaldietal

Semester: 5 Fundamental Teaching Unit 1 (3.1.2): Physiology of Integrated Systems Course 2: Physiology of Digestion

- Credits: 2
- Coefficient: 1

Teaching Objectives:

• In direct relation to nutrition, the knowledge acquired in this course will allow students to better situate their specialization in relation to major bodily functions.

Recommended Prior Knowledge:

• Animal Biology.

Course Content:

- I- General Anatomophysiology of the Digestive Tract
- II- Physiology of Digestion
 - 1- Food intake
 - 2- Digestive functions
 - 3- Physiology of the buccoesophageal phase
 - 4- Physiology of the gastric phase
 - 5- Physiology of the intestinal phase
 - 6- Food metabolism in the digestive tract
 - 7- Intestinal absorption of nutrients
 - 8- Physiological functions of waste elimination

• III- Hepatodigestive Function: Anatomophysiology and Metabolic Homeostasis

Practical Work:

• Analysis and synthesis of recent articles on human nutrition and digestive pathologies, methods of exploring the digestive tract.

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

- 1. Manuel d'anatomie et de physiologie humaine. 2009. Tortora. Edition de Boeck.
- 2. Clés de la Biologie Humaine. 207. Ferrera et Car.

Semester: 5 Methodological Teaching Unit 1 (3.1):

Course 1: Applied Statistics

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

• Introduce students to data survey and analysis techniques, experimental methodology, and experimental design.

Recommended Prior Knowledge:

Basic statistics.

Course Content:

1. Introduction

Part One: Data Survey and Analysis Techniques

- 1. Sampling Techniques
- 2. Survey Techniques (questionnaires). Application to a business plan
- 3. Statistical Estimation
- 4. Hypothesis Testing
- 5.Regression Analysis. Application to quality control

Part Two: Experimental Methodology and Experimental Design

Analysis of Variance. Establishing the experimental design and choosing the appropriate model. One-way ANOVA. Two-way ANOVA

Practical Work:

- Practical work is conducted on computers using statistical software (Excel-stat, R, SPSS, etc.). The goal of the sessions is to:
 - Familiarize students with the software.
 - \circ $\,$ Use the software to apply the concepts covered in the course to real datasets.
 - Interpret data representations and the results of statistical estimations or tests.

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

Bibliographic References:

T.LChap., 2003. Introductory Biostatistics. Ed. Wiley & Sons, Hoboken, New Jersey, 552p.

J.MLegay, 1966. Exercices destatistique pour biologistes, Ed. Flammarion (Paris), 304 p.

SMorgenthaler.,2001.Introductionàlastatistique,Ed.Pressespolytechniquesetuniversitairesromandes, 318p.

D.SPaulson.,2008.BiostatisticsandMicrobiology:ASurvivalManual.Ed.Springer,226p. KProtassov.,2002.Analysestatistiquedesdonnéesexpérimentales,Ed.EDPEssonne,148p.

BScherrer,LegendreP,&MohanB,2007.Biostatistique.V1,Ed.Gaetanmorin,816p

Semester: 5 Methodological Teaching Unit 1 (3.1):

Course 2: Food Traceability

- Credits: 5
- **Coefficient:** 3

Teaching Objectives:

• Enable students to acquire the essential basic principles of traceability.

Recommended Prior Knowledge:

• Applied microbiology, food composition.

Course Content:

- 1. National and International Traceability Regulations
 - ISO, Codex Alimentarius, Algerian texts.
 - 2. The Place of Traceability in Food Safety
 - The different objectives of traceability (safety, legal, improvement, and economic).

• 3. Elements to Trace

- Forms of traceability.
 - Upstream traceability.
 - Internal traceability.
 - Downstream traceability.
 - Total traceability.
 - Traceability documentation.

Trac4. Controls

- \circ The role of authorities.
- Product controls.
- Food industry controls.

Practical Work:

• Educational outings: visits to food processing industries (fruit and vegetable processing industry, dairy industry, etc.).

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

References:

AFNOR,2002. Traçabilité dans la filière agricole et alimentaire.

D.Portetelleetal.,2000.Traçabilitédanslafilièreanimale.Biot.Agr.Soc.Envir.,4(4),233-240.

T.Chi-Dung,2002.Traçabilitétotaleenagro-alimentaire:méthodologiepratiqueetsuivi.www.afnor.fr. ASO22005,Systèmedetraçabilitédanslachaînealimentaire:principesgénérauxrelatifsàlaconceptio netà laréalisation.Apublier.

S.Magalie, 2007. Traçabilité dans les ecteuragro-

a limentaire. Magalie. schott@voirin-consultants.com.

Semester: 5

Discovery Teaching Unit (UED1):

Course: General Endocrinology

- Credits: 2
- Coefficient: 2

Teaching Objectives:

• Introduce students to the actions of hormones related to nutrition.

Recommended Prior Knowledge:

• Biochemistry and animal biology.

Course Content:

1. Energy Balance, Metabolism, and Nutrition

- 1.1. Energy metabolism
- 1.2. Intermediate metabolism
- 1.3. Nutrition

2. The Thyroid Gland

- 2.1. Actions of thyroid hormones
- 2.2. Mechanism of action of thyroid hormones

3. Endocrine Functions of the Pancreas

- 3.1. Mechanisms of action of insulin
- o 3.2. Glucagon
- o 3.3. Endocrine regulation of carbohydrate metabolism

4. Adrenal Medulla and Adrenal Cortex

- 4.1. Physiological actions of glucocorticoids
- 4.2. Pharmacological and pathological effects of glucocorticoids

5. Parathyroid Glands

- 5.1. Calcium metabolism
- 5.2. Mechanism of action of parathyroid hormone and calcitonin
- 6. Pituitary Gland
 - 6.1. Growth hormone
 - 6.2. Physiology of growth
- 7. Gonads
 - 7.1. Pituitary gonadotropins and prolactin
 - 7.2. Pregnancy and lactation

Practical Work:

- Presentations on module chapters:
 - Mechanism of action of hormones; Type 1 diabetes mellitus; Goiter; Adrenal gland disorders; Parathyroid gland disorders; Pituitary gland and hypothalamic control disorders; Adrenal pathologies; Ovarian dysfunction; Gestational diabetes; Gynecomastia; Diabetes insipidus; Hypercalcemia; Cushing's syndrome; Acromegaly; Endocrine disruptors (pesticides, analgesics....); Menstrual cycle regulation.

Assessment Method: Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

References:

- Idelman S., Verdetti J. Endocrinology and Cellular Communications. EdpSciences, 2000.
- Chanson P., Young J. Treatise on Endocrinology. Medicine-Sciences, Flammarion 2007.

• Dupovy J.P. Hormones and Major Functions. Volume 1, Ellipses, Paris, 1992

Semester: 5

Transversal Teaching Unit (UET1):

Course: Food Additives and Contaminants

- Credits: 1
- Coefficient: 1

Teaching Objectives:

Introduce students to basic concepts in toxicology related to the use of food additives and the risks of food contaminants.

Recommended Prior Knowledge:

• Biochemistry and microbiology.

Course Content:

- I. Basic Concepts in Toxicology
- II. Additives:
 - 1. Preservatives and antioxidants
 - 2. weeteners
 - 3. Texture agents: thickeners, gelling agents, modified starches, emulsifiers, stabilizers
 - 4. Colorings and flavorings
 - 5. Flavor enhancers
 - 6. Additives with nutritional purposes (vitamins, trace elements)
 - 7. Additives and water activity depressants
 - 8. Processing aids (enzymes, clarifiers, antifoaming agents...)
 - 9. Food additive legislation
- III. Contaminants:
 - Toxicology of metals and metalloids: generalities, cases of mercury, lead, cadmium, arsenic, aluminum
 - Toxicology of nitrates and nitrites
 - Toxicology of dioxins
 - Toxicology of pesticides: generalities, cases of organochlorines, organophosphates, carbamates, and pyrethroids
 - Toxicology of mycotoxins
 - Food allergies

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

References:

JL.MULTON,1992.Additifsetauxiliairesdefabricationdanslesindustriesagroalimentaires.F75384Paris Cedex08,France;TechniqueetDocumentationLavoisier.Ed.2,XXX,754pp.ISBN2-85206-606-8.

H.RICHARD,1992.Epicesetaromates.F75384ParisCedex08,France;TechniqueetDocumentation Lavoisier.Ed.2,XXX,754pp.ISBN2-85206-774-9.

CF.Moffat,WhittleKJ,1999.Environmentalcontaminantsinfood.SheffieldAcademicPress,Engla nd,584 p.

J.Adrian, 1987. Composition dublé. Fondation Ronac, p:11-34.

CF.Moffat,KJWhittle,1999.Environmentalcontaminantsinfood.SheffieldAcademicPress,England,584 p.Texteslégislatifsrégissantlesadditifsalimentairesetcontaminants

NormesNationalesetInternationalesrelativesauxadditifsalimentairesetcontaminants

Semester: 6 Fundamental Teaching Unit (UEF3.2.1): Food Safety Course 1: Food Quality Management

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

• After completing this course, students will have the necessary knowledge of the procedures and regulatory aspects of preventing and preserving the sanitary quality of food.

Recommended Prior Knowledge:

• None specified.

Course Content:

- 1. The concept of quality
- 2. Quality characteristics
- 3. Quality tools
- 4. ISO standards
- 5. Work and organization standards
 - a. Good Manufacturing Practices (GMP)
 - b. Good Laboratory Practices (GLP)
 - c. Good Hygiene Practices (GHP)
- 6. Standardization organizations
- 7. Certification, Accreditation, Audit
- 8. National and international legislation
- 9. Application of the HACCP method in the food industry

Practical Work:

- Series of exercises on the course chapters:
 - Organoleptic study of food products
 - Physicochemical analysis of food (water content determination)
 - Physicochemical analysis of food (ash content determination)
 - Conformity study of food packaging
 - Microbiological criteria of food (3 sessions)
 - Case study of HACCP application in the food industry

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

Bibliographic References:

1. Quality Management: Tools and Practical Applications, ISHIKAWA. Dunod, 2007.

2. Food Product Quality: Policy, Incentives, Management and Control. Tec&Doc, 1994.

Semester: 6

Fundamental Teaching Unit (UEF3.2.1): Food Safety

Course 2: Food Toxicology and Microbiological Safety

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

• After completing this course, students will be able to identify the risks associated with food contamination and understand their consequences.

Recommended Prior Knowledge:

• None specified.

Course Content:

- I. Microbiological safety of food
 - 1. Principle of foodborne illness
 - Bacterial toxicity
 - Mycotoxins
 - 2. Microbial groups in food safety
 - 3. Microorganism/food associations
 - 4. Microbiological control of food
- II. Food toxicology
 - 1. Toxicities and mechanisms of action of toxic substances
 - 2. Study methods
 - 3. Harmful natural substances in food
 - 4. Food additives
 - 5. Metals
 - 6. Alcohols, ketones, peroxides, nitrates, nitrites, nitrosamines
 - 7. Pesticide residues in food
 - 8. Packaging residues in food
 - 9. Prevention and legislation

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

- 1. Practical Guide to Toxicology, Reichl Franz-Xavier, De Boeck, 2004.
- 2. Food Microbiology. T.1, Microbiological Aspects of Food Safety and Quality, Bourgeois Claude-Marcel, Ed. Tec.e

Semester: 6 Fundamental Teaching Unit (UEF3.2.2): Course: Food Microbiology

- Credits: 6
- Coefficient: 3

Teaching Objectives:

• Provide the necessary information on the main microorganisms relevant to the food industry and assess the sanitary and hygienic quality of food.

Recommended Prior Knowledge:

• Microbiology.

Course Content:

- Introduction
- I. Major bacteria
- A. Major microbial groups in food microbiology
- II. Influence of manufacturing techniques on microbes
 - 1. Destruction of manufacturing flora on microbes
 - 2. Chemical factors (antiseptics, fungicides, antibiotics)
 - 3. Flora stabilization
- III. Microbiological problems in a food factory
- V. Intoxications and foodborne illnesses
 - 1. Botulism
 - 2. Salmonellosis
 - 3. Staphylococci
 - 4. Mycotoxins
 - 5. Seafood toxins
- VI. Microbiological analysis of food

Practical Work:

- Microbiological analysis of food
 - 1. Water
 - 2. Milk
 - 3. Fermented milk and cheese
 - 4. Butter and fat
 - 5. Meat and meat products
 - 6. Fish and seafood
 - 7. Alcoholic and non-alcoholic beverages
 - 8. Vegetable products and derivatives
 - 9. Canned goods
 - 10. Various foods (creams, ready meals, etc.)

Assessment Method:

- Presentations, quizzes, reports.
- Weighting:
 - Exam: 60%
 - Continuous assessment: 40%

References:

- CM. BOURGEOIS and JP. LARPENT, 1996. Food Microbiology. Volume 2. Fermented Foods and Food Fermentations. 2nd edition. Technique et Documentation Lavoisier Paris. ISBN 2-85206-517-7.
- CM. BOURGEOIS et al., 1996. Food Microbiology. I. Microbiological Aspects of Food Safety and Quality. 2nd edition. Technique et Documentation Lavoisier Paris. F75384 Paris France, ISBN 2-85206-451-0. 419pp.

Semester: 6 Methodological Teaching Unit (UEM1.1): Course: Health and Nutritional Therapy

- Credits: 4
- Coefficient: 2

Teaching Objectives:

• Enable students to understand the basics of nutritional therapies.

Recommended Prior Knowledge:

• Biochemistry and Human Nutrition.

Course Content:

- 1. Specific needs 1.1. Fetus 1.2. Infant 1.3. Child 1.4. Adolescent
- 2. Nutritional therapy and female reproductive life
- 3. Nutritional therapy intervention in cardiovascular systems
- 4. Immune system, prevention of infectious diseases
- 5. Pollution, allergies
- 6. Free radicals, degenerative diseases, cancers
- 7. Intervention in age-related deterioration
- 8. Digestive and intestinal disorders, use of prebiotics and probiotics
- 9. Interest and importance of physiological antioxidants, essential fatty acids, vitamins, minerals, and essential amino acids.

Practical Work:

- Analysis and synthesis of recent articles on nutritional therapies
 - 1. Functional foods
 - 2. Gut flora and health
 - 3. Nutrigenomics
 - 4. Plant-based milks and derivatives
 - 5. Dietary regimens
 - 6. Medicinal plants: benefits and limitations
 - 7. Biological activities of olive oil and olive leaves
 - 8. Probiotics, prebiotics, and symbiotics
 - 9. Xenobiotics

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

References:

- 1. Cazel A.R., Gayet B. Keys to Nutritional Therapy. Quintessence Edition 2002.
- 2. Curtay J.P. Nutritional Therapy. Scientific Basis and Medical Practice. Nutri Doc 2008.
- 3. Roberfroid M., Coxam U., Delzenne N.I. Functional Foods. Tec et Doc 2011.

Semester: 6 Methodological Teaching Unit (UEM1.1): Course: Physicochemical Properties of Food

- Credits: 5
- **Coefficient:** 3

Teaching Objectives:

• This module aims to teach students the importance of water activity and the functional properties of various food constituents (proteins, lipids, and polysaccharides).

Recommended Prior Knowledge:

• Biochemistry.

Course Content:

- CHAPTER I. WATER
 - \circ Generalities
 - 1. Water structure
 - 2. Physical properties
 - 3. Water activity
 - 4. Behavior of water in solutions during freezing
 - 5. Adsorption isotherms
 - 6. Hysteresis phenomena of isotherms
 - 7. Sorption isotherms in the food industry
- CHAPTER II. PROTEIN SYSTEMS
 - 1. Physical properties of proteins
 - 2. Extraction of food proteins
 - 3. Egg proteins: properties and uses
 - 4. Functional properties of dairy proteins and improvement
 - 5. Protein ingredients
- CHAPTER III. LIPIDS
 - 0. Chemical and physical properties of lipids
 - 1. Functional properties of certain fats
 - 2. Nutritional needs for fats
 - 3. Conservation and alteration

CHAPTER IV. STUDY OF POLYSACCHARIDES

- 0. Cellulose and its derivatives
- 1. Starch
 - 1. Gelatinization and retrogradation phenomena
 - 2. Rheological behavior
 - 3. Functional properties of native and modified starches
 - 4. Amylolytic enzymes and their uses
- 2. Dietary fiber

Practical Work:

- Enzymatic browning
- Non-enzymatic browning
- Sugar determination by refractometer
- Determination of physical indices of oils
- Determination of chemical indices of oils
- Vitamin C determination in fruits and vegetables

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

• Exam: 60%

• Continuous assessment: 40%

References:

- Dilmi-Bouras A. (1998). Food Constituents... Edition, OPU, Algiers, 272 p.
- Dilmi-Bouras A. (2004). Food Biochemistry. Edition OPU, Algiers, 110 p.
- Dilmi-Bouras A. (2006). General Biochemistry. Dar El-Hadith Edition, Algiers, 290 p.

Semester: 6 Methodological Teaching Unit (UEM1.2): Course: Analytical Techniques

- Credits: 4
- **Coefficient:** 2

Teaching Objectives:

- Mastery of analytical techniques.
- **Recommended Prior Knowledge:**
 - Chemistry and biochemistry.

Course Content:

- Main spectrophotometric techniques
 - 1. Molecular absorption spectrometry
 - UV-Visible molecular absorption spectrometry
 - Infrared molecular absorption spectrometry
 - 2. Atomic emission spectrometry
 - 3. Atomic absorption spectrometry
 - 4. Nuclear Magnetic Resonance
- Main separation techniques
 - 1. Chromatography
 - 2. Electrophoresis
 - Focusing
 - 3. Labeling methods
 - Isotopic methods
 - Radioimmunoassay
 - Radioenzymatic assay

Practical Work:

- Solution preparation
- UV-Visible spectrophotometry
- Refractometry
- Lipid determination
- Protein determination
- Total sugar determination
- Chromatographic techniques: Thin layer, Gas chromatography

Assessment Method:

- Presentations, quizzes, reports.
- Weighting:
 - Exam: 60%
 - Continuous assessment: 40%

References:

- Skoog. Holler. Nieman. 2003. Principles of Instrumental Analysis. De Boeck Edition.
- George Charalambous. 1983. Instrumental Analysis of Food. Academic Press Edition.
- Jacques Bérarud. 2003. The Biological Analysis Technician. Tec et Doc Edition.
- Plas O., Allay J., Chassin M. 2005. Biological Analyses. Doin Edition.
- Beck Moreau. 1992. Practical Guide to Medical Analyses by Simple and Rapid Methods. Vigot Edition.

Semester: 6 Discovery Teaching Unit (UED1): Course 1: Physiology of Major Functions

- **Credits:** 1
- Coefficient: 1

Teaching Objectives:

• Upon successful completion of this course, students will be able to trace the physiology of blood, the nervous system, and the respiratory, cardiovascular, and urinary systems.

Recommended Prior Knowledge:

• Animal biology.

Course Content:

- I- Blood
 - 1. Liquid compartment and role of blood cells
 - 2. Primary and secondary hemostasis
- II- Nervous system: Structure, organization, and general functions
- III- Cardiovascular system: Homeostasis at rest and during exercise
- IV- Respiratory system: Functional anatomy, mechanisms, and homeostasis
- V- Urinary system: Functional anatomy and hydromineral homeostasis

Practical Work:

• Analysis and synthesis of recent articles

Assessment Method:

• Presentations, quizzes, reports.

Weighting:

- Exam: 60%
- Continuous assessment: 40%

- 1. Manual of Human Anatomy and Physiology. 2009. Tortora. De Boeck Edition.
- 2. Keys to Human Biology. 207. Ferrera and Car.

Semester: 6 Discovery Teaching Unit: UED 1 (O/P) Course: Entrepreneurship and Project Management

- **Credits:** 1
- **Coefficient:** 1
- Teaching Method: Distance learning

Teaching Objectives:

- Introduce learners to project development, launch, monitoring, and implementation.
- **Recommended Prior Knowledge:**
 - Economics, Marketing.

Course Content:

- Entrepreneurship and business management 1.1. Definition of a business 1.2. Business organization 1.3. Supply management: Purchasing, inventory, and warehouse management 1.4. Production management: Production methods and policies 1.5. Commercial management and marketing: * Product policy * Price policy * Advertising * Sales techniques and team
- Business creation project development 2.1. Definition of a project 2.2. Project specifications 2.3. Project financing methods 2.4. Project implementation phases 2.5. Project management 2.6. Time management 2.7. Quality management 2.8. Cost management 2.9. Task management

Assessment Method:

• Final Exam (100%)

- 1. Bertrand Moingeon and Laurence Lehmann-Ortega (2010), "Genesis and Deployment of a New Business Model: A Striking Case Study," Management, 13: 4, 266-297.
- 2. Dauchy D., 2010, 7 Steps to a Solid Business Model, Dunod.
- 3. Verstraete J., Jouison-Laffitte E., Business Model for Entrepreneurship, De Boeck Universite, 2009.