

Setif 1 University - Ferhat ABBAS

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي جامعة سطيف 1 – فرحات عباس كلية العلوم

FACULTY OF SCIENCES

Bachelor in Fundamental Physics

Objectives of the License:

- The license in Fundamental Physics allows the student to acquire in-depth knowledge of fundamental physics and skills relating to experimental techniques of study, analysis, and characterization. It also allows the student to master tools in terms of experimental and theoretical research methodology.
- This training aims to master the concepts and foundations of physics, which constitutes the essential link for technology.
- The fundamental Physics path is intended to provide to students solid knowledge in physics to prepare (without this being exclusive) for a Master's degree and doctorate in physics.

Masters degree offered at Faculty of Sciences:

- Master in Energy Physics and Renewable Energies.
- Master in Materials Engineering,
- Master in Theoretical and Fundamental Physics
- Master in Subatomic Physics Engineering.
- Haster in Globe Physics

Job Outlook for Physicists

Physicists find employment in various contexts after obtaining their diploma:

- teaching in middle education colleges (CEM) and high schools,
- Iaboratories and research entities,
- medical physics establishments,
- in manufacturing industries
- just to name a few!

Program Overview:

Semester 3

Teaching Unit: Fundamental (Credits: 20 Coefficients: 10)

Series & Differential Equations (Credits: 6 Coefficients: 3)

> Chapter 1: Single and Multiple Integrals Chapter 2: Improper Integrals Chapter 3: Differential Equations

Chapter 4: Series Chapter 5: Laplace Transform Chapter 6: Fourier Transform

Analytical Mechanics (Credits: 6 Coefficients: 3) Chapter 1: Classical Mechanics Review Chapter 2: Lagrangian Formalism Chapter 3: Hamiltonian Formalism Chapter 4: Rigid Body Motion Chapter 5: Lagrangian Mechanics of Continuous Media Chapter 6: Liouville Theorem. Hamilton–Jacobi Equation

 Vibrations & Waves (Credits: 4 Coefficients: 2) Chapter 1: Introduction to Vibrations Chapter 2: Linear Systems with One Degree of Freedom Chapter 3: Linear Systems with Multiple Degrees of Freedom Chapter 4: Introduction to Mechanical Waves Chapter 5: Transverse Waves on a String Chapter 6: Longitudinal Waves in Fluids

Geometrical & Physical Optics (Credits: 4

Chapter 7: Elastic Waves in Solids

Coefficients: 2)

Chapter 1: Geometrical Optics Chapter 2: Wave Optics Chapter 3: Diffraction and Applications Chapter 4: Polarization Chapter 5: Lasers and Applications

<u>A</u> Lab Work – Vibrations & Waves (Credits: 2 Coefficients: 1)

Transverse string oscillations Electromechanical systems (e.g., dynamic louds-peaker) Damped oscillations (free and forced RLC circuits) Coupled oscillations: beat phenomenon Coupled oscillations: normal modes Longitudinal wave propagation in fluids Ripple tank experiments Kundt's tube Induction phenomena

🔬 Lab Work – Geometrical & Physical Optics

(Credits: 2 Coefficients: 1) Light sources and detectors Reflection (plane, spherical mirrors) and refraction (air/glass, glass/air) Prism: deviation and dispersion

Grating: dispersion Prism and grating spectroscope Focal length measurement (focometer) Microscope Light polarization (linear, circular, elliptical) Thin film reflection (plane-parallel films) Spectrophotometry (optical filters) Interferometry (wavelength, index, velocity) Diffraction (slits and gratings, Bragg law, monochromator)	Quantum Mechanics (Credits: 4 Coefficients: 2) Chapter 1: Introduction to Quantum Phenomena Chapter 2: Description of Particles in Quantum Mechanics Chapter 3: Schrödinger Equation and One- Dimensional Potentials Chapter 4: Mathematical Formalism of Quantum Mechanics Chapter 5: Postulates of Quantum Mechanics Chapter 6: Introduction to the Quantum
Numerical Methods and Programming (Credits: 3 Coefficients: 2) Chapter 1: Introduction/Review of Programming Languages Chapter 2: Numerical Integration Chapter 3: Solving Nonlinear Equations Numerically Chapter 4: Solving Ordinary Differential	 Bectromagnetism (Credits: 4 Coefficients: 2) Chapter 1: Mathematical Tools Chapter 2: Maxwell's Equations Chapter 3: Electromagnetic Wave Propagation Chapter 4: Electromagnetic Radiation
Equations Numerically Chapter 5: Solving Linear Systems Numerically	Thermodynamics Lab (Credits: 2 Coefficients: 1) Ideal Gas Law – Boyle-Mariotte Law Verification Determination of Gamma (Cp/Cv) – Clément-
 Physical Crystallography (Credits: 2 Coefficients: 2) I – GENERALITIES II – SYMMETRY OF FINITE FIGURES III – LATTICE SYMMETRY – BRAVAIS LATTICES IV – EXPERIMENTAL DIFFRACTION METHODS V – CHEMICAL BONDING English 3 (Credits: 1 Coefficients: 1) 	Desormes Method Thermal Expansion of Solids Calorimetry – Measuring Heat Quantities or Thermal Transfers Latent Heat of Vaporization Thermocouple Calibration (Thermoelectric Power) Heat Propagation in a Metal Rod
Semester 4	Thermal Insulation Kinetic Theory of Gases – Boyle's Law (P-V at
Thermodynamics (Credits: 6 Coefficients: 3) Chapter 1: Review of Thermodynamics	Constant T)
Principles Chapter 2: Heat Transfer Modes Chapter 3: Principle of Maximum Entropy Chapter 4: Kinetic Theory and Irreversible Phenomena Chapter 5: Thermodynamic Functions Chapter 6: Chemical Potential Chapter 7: Applications	 Fluid Mechanics (Credits: 3 Coefficients: 2) Chapter 1: General Concepts Chapter 2: Fluid Statics Chapter 3: Fluid Kinematics Chapter 4: Dynamics of Ideal Fluids Chapter 5: Dynamics of Viscous Fluids Chapter 6: Introduction to Gas Dynamics General Electronics (Credits: 3 Coefficients: 2)
Complex Variable Functions (Credits: 4 Coefficients: 2) Chapter 1: Holomorphic Functions	Part I – Electric Networks Part II – Passive Two-Port Networks Part III – Diodes
Chapter 2: Elementary Functions Chapter 3: Fundamental Theorems for Holomorphic Functions Chapter 4: Residue Theorem and Applications to Integral Calculus Chapter 5: Applications	Physico-chemical analysis methods (Credits: 3 Coefficients: 2) Chapter 1: Introduction to spectroscopy Chapter 2: UV-Vis Spectroscopy Chapter 3: IR Spectroscopy

Chapter 4: Mass Spectrometry Chapter 5: Nuclear Magnetic Resonance (NMR)

Semester 5

Quantum Mechanics II (Credits: 6 Coefficients: 3)

Chapter 1: Review of Quantum Mechanics Postulates Chapter 2: Angular Momentum Chapter 3: Central Potential Chapter 4: Approximation Methods Chapter 5: Elastic Scattering by a Central Potential

Statistical Physics (Credits: 6 Coefficients: 3)

Chapter 1: Fundamentals Chapter 2: Microcanonical Ensemble Chapter 3: Canonical Ensemble Chapter 4: Grand Canonical Ensemble Chapter 5: Applications

Special Relativity (Credits: 4 Coefficients: 2)

Chapter 1: Historical Background Chapter 2: Relativistic Kinematics Chapter 3: Relativistic Dynamics Chapter 4: Electromagnetism

Mathematical Methods for Physics (Credits: 4 Coefficients: 2)

Coefficients: 2)

Chapter 1: Eulerian Functions – Beta and Gamma Chapter 2: Bessel Functions Chapter 3: Error Function and Fresnel Integrals Chapter 4: Exponential, Sine, and Cosine

Integrals Chapter 5: Orthogonal Polynomials

Chapter 6: Hypergeometric Function

Particle physics (Credits: 1 Coefficients: 1)

Numerical Physics (Credits: 4 Coefficients: 2)

Semiconductor physics (Credits: 4 Coefficients: 2)

Scientific English 1 (Credits: 2 Coefficients: 1) Grammar review focused mainly on prepositions and definite/indefinite articles Texts will be provided on: Kinetic theory of gases Relativity, Waves and particles Optics, Elements of statistical physics

Semester 6

Solid State Physics (Credits: 6 Coefficients: 3)

Chapter 1: Crystallography Chapter 2: Mechanical Properties – Elasticity Chapter 3: Lattice Vibrations and Thermal Properties Chapter 4: Electrons in Solids Chapter 5: Dielectrics Chapter 6: Magnetism

Nuclear Physics (Credits: 4 Coefficients: 2)

Chapter 1: The Atomic Nucleus Chapter 2: Nuclear Reactions Chapter 3: Radioactivity Chapter 4: Nuclear Energy

Heat Transfer (Credits: 4 Coefficients: 2)

Chapter 1: Heat Transmission Chapter 2: Conduction Chapter 3: Convection Chapter 4: Radiation – Mechanisms and Properties

Atomic Physics (Credits: 4 Coefficients: 2) Chapter 1: Hydrogen-Like Atoms Chapter 2: Multi-Electron Atoms Chapter 3: Radiative Transitions Chapter 4: X-Rays

Nuclear Physics Lab (Credits: 4 Coefficients: 2)
 Lab 1: Study and efficiency of the Geiger-Müller detector
 Lab 2: Nuclear statistics
 Lab 3: Attenuation of β and γ radiation in aluminum
 Lab 4: Attenuation of β and γ radiation in lead

Plasma Physics (Credits: 1 Coefficients: 1)

Chapter 1: Plasma Medium – Definition and Main Characteristic Quantities Chapter 2: Motion of a Single Charged Particle in Electric and Magnetic Fields Chapter 3: Elementary Processes in Plasmas Chapter 4: Introduction to Kinetic Theory Chapter 5: Transport Equations Chapter 6: Introduction to Dusty Plasma Physics

Scientific English 2 (Credits: 1 Coefficients: 1) Writing a technical report Writing the report document Oral presentation and communication