الجممورية الجزائرية الديمتراطية الشعبية



People's Democratic Republic of Algeria

وزارة التعليم العاليي والبديث العلمي

Ministry of Higher Education and Scientific Research

اللجنة البيداغوجية الوطنية لميدان العلوم و التكنولوجيا

National Pedagogical Committee for the Field of Science and Technology

## Academic Master's 1 Program (Harmonized)

#### National Program Updated: 2022

#### **Domain: Sciences and Technologies**

**Field:** Telecommunications **Specialization:** Networks and Telecommunications

### **Admission Conditions**

(Indicate the bachelor's specializations that provide access to the Master's program)

| Field              | Harmonized Master's                | Specializations Providing<br>Access to the Master's | Compatibility<br>Rating | Coefficient<br>Assigned to the<br>Bachelor's Degree |
|--------------------|------------------------------------|-----------------------------------------------------|-------------------------|-----------------------------------------------------|
| Telecommunications | Networks and<br>Telecommunications | Telecommunications                                  | 1                       | 1.00                                                |
|                    |                                    | Electronics                                         | 2                       | 0.80                                                |
|                    |                                    | Biomedical Engineering                              | 3                       | 0.70                                                |
|                    |                                    | Automation                                          | 3                       | 0.70                                                |
|                    |                                    | Other ST Domain Licenses<br>(Group A)               | 5                       | 0.60                                                |

# **Semester Organization Sheets**

#### Semester 1

| Teaching Unit                  | Subjects/ Titles                            | Credits | Coefficient | Weekly<br>Hours<br>(Course/<br>Tutorials<br>/Labs) | Semester<br>Hours<br>(15<br>weeks) | Complementary<br>Work | Evaluation M<br>Continuous/E |     |
|--------------------------------|---------------------------------------------|---------|-------------|----------------------------------------------------|------------------------------------|-----------------------|------------------------------|-----|
| Fundamental<br>TU (FTU 1.1.1)  | Advanced<br>Digital<br>Communications       | 6       | 3           | 3h Course<br>1h30 Tutorials                        | 67h30                              | 82h30                 | 40%                          | 60% |
|                                | IP Routing                                  | 4       | 2           | 1h30 Course<br>1h30 Tutorials                      | 45h00                              | 55h00                 | 40%                          | 60% |
| Fundamental<br>TU (FTU 1.1.2)  | Propagation and<br>Antennas                 | 4       | 2           | 1h30 Course<br>1h30 Tutorials                      | 45h00                              | 55h00                 | 40%                          | 60% |
|                                | Advanced Signal<br>Processing               | 4       | 2           | 1h30 Course<br>1h30 Tutorials                      | 45h00                              | 55h00                 | 40%                          | 60% |
| Methodological<br>TU (MTU 1.1) | Lab Advanced<br>Digital<br>Communications   | 2       | 1           | 1h30 Labs                                          | 22h30                              | 27h30                 | 100%                         |     |
|                                | Lab IP Routing                              | 2       | 1           | 1h30 Labs                                          | 22h30                              | 27h30                 | 100%                         |     |
|                                | Lab Advanced<br>Signal<br>Processing        | 2       | 1           | 1h30 Labs                                          | 22h30                              | 27h30                 | 100%                         |     |
|                                | Object-Oriented<br>Programming in<br>Python | 3       | 2           | 1h30 Course                                        | 37h30                              | 37h30                 | 40%                          | 60% |
| Discovery TU<br>(DTU 1.1)      | Elective Subject<br>1                       | 1       | 1           | 1h30 Course                                        | 22h30                              | 02h30                 | 100%                         |     |
|                                | Elective Subject<br>2                       | 1       | 1           | 1h30 Course                                        | 22h30                              | 02h30                 | 100%                         |     |
| Transversal<br>TU(TTU 1.1)     | Technical<br>English and<br>Terminology     | 1       | 1           | 1h30 Course                                        | 22h30                              | 02h30                 | 100%                         |     |

Total Semester 1: 30 Credits, 17 Coefficients, 375h00

#### Semester 2

| Teaching Unit                  | Subjects/ Titles                                      | Credits | Coefficient | Weekly Hours<br>(Course/<br>Tutorials/<br>Labs) | Semest<br>er<br>Hours<br>(15<br>weeks) | Complementary<br>Work | Evaluation-Mode<br>Continuous/Exam |     |
|--------------------------------|-------------------------------------------------------|---------|-------------|-------------------------------------------------|----------------------------------------|-----------------------|------------------------------------|-----|
| Fundamental UE<br>(FTU 1.2.1)  | Network<br>Services<br>Administration                 | 6       | 3           | 3h Course<br>1h30 Tutorials                     | 67h30                                  | 82h30                 | 40%                                | 60% |
|                                | DSP and FPGA                                          | 4       | 2           | 1h30 Course<br>1h30 Tutorials                   | 45h00                                  | 55h00                 | 40%                                | 60% |
| Fundamental UE<br>(FTU 1.2.2)  | Transmission<br>Channels and<br>Optical<br>Components | 4       | 2           | 1h30 Course<br>1h30 Tutorials                   | 45h00                                  | 55h00                 | 40%                                | 60% |
|                                | Coding and<br>Compression                             | 4       | 2           | 1h30 Course<br>1h30 Tutorials                   | 45h00                                  | 55h00                 | 40%                                | 60% |
| Methodological<br>UE (MTU 1.2) | Lab Network<br>Services<br>Administration             | 2       | 1           | 1h30 Labs                                       | 22h30                                  | 27h30                 | 100%                               |     |
|                                | Lab DSP and<br>FPGA                                   | 2       | 1           | 1h30 Labs                                       | 22h30                                  | 27h30                 | 100%                               |     |
|                                | Lab Coding and<br>Compression                         | 2       | 1           | 1h30 Labs                                       | 22h30                                  | 27h30                 | 100%                               |     |
|                                | High-Speed<br>Networks                                | 3       | 2           | 1h30 Course<br>1h Labs                          | 37h30                                  | 37h30                 | 40%                                | 60% |
| Discovery TU<br>(DTU 1.2)      | Elective Subject<br>1                                 | 1       | 1           | 1h30 Course                                     | 22h30                                  | 02h30                 | 100%                               |     |
|                                | Elective Subject<br>2                                 | 1       | 1           | 1h30 Course                                     | 22h30                                  | 02h30                 | 100%                               |     |
| Transversal TU<br>(TTU 1.2)    | Respect for<br>Standards and<br>Ethical Rules         | 1       | 1           | 1h30 Course                                     | 22h30                                  | 02h30                 | 100%                               |     |

Total Semester 2: 30 Credits, 17 Coefficients, 375h00

#### **Elective Subjects for Discovery Units (S1, S2)**

- 1. Linux System
- 2. Standards and Protocols
- 3. Data Representation in Images and Videos
- 4. Satellite Networks
- 5. Internet of Things (IoT)
- 6. Field Networks
- 7. Operator Networks
- 8. Wireless Sensor Networks
- 9. Electromagnetic Compatibility
- 10. Embedded Systems and Telecommunications
- 11. Radar Techniques
- 12. Space Telecommunications
- 13. Radionavigation System
- 14. Emerging Areas in Optical Telecommunications
- 15. Optical Fiber Installation and Maintenance
- 16. Radio Engineering
- 17. VSAT Technology
- 18. Propagation of Acoustic Microwaves in Piezoelectric Solids
- 19. RF and Microwave Measurements
- 20. Portable Micro-Antennas
- 21. Emerging Telecommunication Systems
- 22. Theoretical Physics of Optical and Microwave Analogies
- 23. Biological Effects of Electromagnetic Waves (Bioelectromagnetism)
- 24. CAD for Telecom Circuits
- 25. Characterization of RF Devices

## Semester 1 – Teaching Objectives by Subject

| Subject Title            | Teaching Objectives                                                         |
|--------------------------|-----------------------------------------------------------------------------|
| Advanced Digital         | Understand and analyze advanced communication systems including             |
| Communications           | non-ideal channels, multiple access methods, and MIMO systems. Learn        |
|                          | to assess transmission chain performance using concepts like BER, SNR,      |
|                          | and spectral efficiency.                                                    |
| IP Routing               | Grasp routing decisions in meshed IP networks. Learn both static and        |
|                          | dynamic routing mechanisms including RIP, EIGRP, and OSPF.                  |
|                          | Understand VLANs, redundancy, EtherChannel, and routing protocols.          |
| Propagation and          | Analyze wave propagation through ground-level and atmospheric               |
| Antennas                 | environments and understand antenna radiation characteristics. Study        |
|                          | practical scenarios such as satellite links and antenna arrays.             |
| Advanced Signal          | Apply stochastic process concepts and spectral analysis to real signals.    |
| Processing               | Explore FIR/IIR filters, adaptive filtering (LMS, RLS), time-frequency, and |
|                          | wavelet-based analysis.                                                     |
| Lab: Advanced Digital    | Simulate digital transmission chains using MATLAB/Simulink. Study           |
| Communications           | digital modulation (BASK, BPSK, QAM), and implement OFDM, CDMA,             |
|                          | and MIMO systems.                                                           |
| Lab: IP Routing          | Practice real/simulated router and switch configurations for VLANs, inter-  |
|                          | VLANs, EtherChannel, static/dynamic routing (RIP, OSPF, EIGRP).             |
| Lab: Advanced Signal     | Implement signal filtering and denoising using MATLAB. Use spectral         |
| Processing               | analysis, LMS filtering, and wavelet transforms for signal analysis.        |
| Object-Oriented          | Master OOP fundamentals and advanced patterns in Python. Learn              |
| Programming in           | design patterns, containers, and iterators for robust software              |
| Python                   | development.                                                                |
| Elective Subjects (e.g., | Gain specialized knowledge in selected emerging or practical areas like     |
| Linux, Standards)        | Linux systems or communication protocols.                                   |
| Technical English and    | Develop technical vocabulary, reading comprehension, and oral/written       |
| Terminology              | skills for scientific communication in English.                             |

## Semester 2 – Teaching Objectives by Subject

| Subject Title                                       | Teaching Objectives                                                                                                         |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Network Services                                    | Learn to operate and manage network services (DNS, DHCP, LDAP,                                                              |
| Administration                                      | Email, FTP). Master administrative tools and security in client-server                                                      |
|                                                     | models and domain management.                                                                                               |
| DSP and FPGA                                        | Design and implement DSP algorithms. Understand DSP architecture                                                            |
|                                                     | and peripherals, use Code Composer Studio, and get introduced to                                                            |
|                                                     | FPGA architecture and applications.                                                                                         |
| Transmission Channels                               | Analyze wave propagation in transmission lines and optical fibers.                                                          |
| and Optical Components                              | Study optical components (passive/active) and optical network                                                               |
|                                                     | architectures.                                                                                                              |
| Coding and Compression                              | Understand and apply source/channel coding and image compression                                                            |
|                                                     | techniques including Huffman, LZW, convolutional, and turbo codes.                                                          |
|                                                     | Evaluate their efficiency and applications.                                                                                 |
| Lab: Network Services                               | Perform network server setup and administration (DNS, DHCP, Web,                                                            |
| Administration                                      | FTP, AD) on Linux/Windows platforms. Gain hands-on practice in                                                              |
|                                                     | remote and secure network management.                                                                                       |
| Lab: DSP and FPGA                                   | Develop and implement DSP applications on hardware. Program                                                                 |
|                                                     | interrupts, digital filters, FFT, and gain introductory VHDL skills.                                                        |
| Lab: Coding and                                     | Simulate source/channel coding techniques and compression                                                                   |
| Compression                                         | methods in practical scenarios. Apply methods like Shannon-Fano,                                                            |
| Libels Consid Nisterrades                           | Huffman, DCT.                                                                                                               |
| High-Speed Networks                                 | Study transport networks (PDH, SDH, DWDM), MPLS, VPN, and WAN                                                               |
|                                                     | technologies. Analyze protocols and design high-speed<br>communication networks.                                            |
| Electivo Subjecto (e.g.                             |                                                                                                                             |
| Elective Subjects (e.g.,<br>Image/Video, Satellite) | Explore specialized topics like image/video processing (OpenCV), or satellite communication systems including GPS and VSAT. |
| Respect for Standards                               | Instill ethical and professional conduct in academic/research settings.                                                     |
| and Ethics                                          | Emphasize intellectual property, research integrity, and ethical aspects                                                    |
|                                                     | of technology use.                                                                                                          |
|                                                     | or technology use.                                                                                                          |